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Controlled instability and multiscaling in models of epitaxial growth
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We show that discretized versions of commonly studied nonlinear growth equations have a generic insta-
bility in which isolated pillars(or groove$ on an otherwise flat interface grow in time when their heigint
depth exceeds a critical value. Controlling this instability by the introduction of higher-order nonlinear terms
leads to intermittent behavior characterized by multiexponent scaling of height fluctuations, similar to the
“turbulent” behavior found in recent simulations of one-dimensional atomistic models of epitaxial growth.
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In recent years, much attention has been focused on th@milar to the multiexponent scaling observed in simulations
nonequilibrium dynamics of growing interfaces. A number[6,7] of atomistic growth models if the coefficients of the
of simple models of epitaxial growth have been proposediigher-order nonlinear terms are chosen appropriately. In
and studied 1—7] analytically and numerically, revealing a particular, our results indicate that the multiscaling behavior
rich variety of interesting phenomena. One such phenomobserved6] in the 1D Das Sarma—Tamboren@r) model
enon for which no explanation is available at present is thé4] is described by the discretized LD equation or an atom-
multiexponent scalingi6] of height fluctuations found in re- istic version of it, supplemented by a set of higher-order
cent simulationg6,7] of a class of one-dimension&lD) nonlinear terms with appropriate coefficients. Our explana-
limited-mobility models of epitaxial growth. This phenom- tion of multiexponent scaling in growth models is conceptu-
enon is particularly interesting because it exhibits a striking?!ly similar to a recent proposal1] that suggests that the
similarity [6] to the intermittent multiscaling of velocity fluc- Mmultiscaling of structure functions in turbulence may be
tuations in fully developed fluid turbulen¢8]. In this paper, ~caused by singularities occurring on a dense set of space-
we propose an explanation of this phenomenon. We firsime points.
show that discretized versions of simple nonlinear growth Our conclusions are based on detailed studies of dis-
equations, such as the Kardar-Parisi-Zh&§Z) equation  cretized versions of the LD and KPZ equations using direct
[1] and the Lai—-Das SarmdD) equation[2,3], exhibit an  humerical integration. The LD equation has the form
instability in which isolated pillars or grooves on an other-
wise flat interface tend to grow in time. Instabilities in direct oh'(r,0)/gt=—vV*h'+ N\ VI VR 2+ p(r,t), (D)
numerical integration of discretized KPZ and LD equations ) ) ]
have been noted earli¢®,10]: our results show that these Whereh'(r.t) represents the “height” variable at the point
instabilities aregenericto discretized nonlinear growth equa- " at timet and » is a Gaussian random noise with correla-
tions if the bare coupling constafdetermined by the details tons
of the model exceeds a critical valuéwhich may equal
zero. In contrast to previous studi¢8] that attributed the (n(r,)m(r',t"))=2D4&(r—r")5(t—t"). 2
instability in the discretized KPZ equation to “numerical _ . . . . )
artifacts,” our work shows that this instability is antrinsic This equation is numerically integrated using a simple Euler

property of the discretized equation with or without noise.Scheme{10,12. To this end, we first define dimensionless
Since the 1D continuum KPZ equation without notiees \{arlablesx, T, _andh by cho_osmg appropnate. umts_ of I_ength,
not have any instability, our results lead to the importantiime, and height, respectively, and then discretize in space
conclusion that the behavior of discretized nonlinear growttind time by defining the dimensionless discretization scale
equations may be very different from that of their truly con- 2% and the integration time step7. This leads to a set of
tinuum versions. Our second important finding is that the UPdate equations’[10] for the variablegh;(7)} represent-
recently discovered multiexponent scaling phenomgsla N9 the dllmen5|oryless helght va_rlables at the computational
are closely connected to this nonlinear growth instability. M€sh points at dimensionless timre We use the standard
Models in which this instability is controlled by introducing three-point definition of the lattice derivatives in most of our
higher-order nonlinear terms exhibit deviations from simplecalculations, but have explicitly verified that a more refined
scaling over the time interval during which the instability is five-point definition does not change our results. The behav-
operative. The behavior in this regime is found to be verylOr of the discretized equation is governed by a single dimen-
sionless parameter= \2\2D/1%a{'" 92 (d is the substrate
dimension anda, is the spacing between adjacent mesh
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original continuum equatiofil]. Note that in both LD and greater than a “critical” valueh,=20/\. We find that the
KPZ equations in one dimension, the value\ofan be made values ofh. obtained forA7=0.01, 0.001, and 0.0001 are
small by choosing a small value fag. However, the small- very close to one another, indicating that this instability is
est value k) that A can have for a physical system is not a numerical artifact of not using a sufficiently small
obtained by replacing, by a,, the short-distance cutoff of value of Az It is virtually impossible to determine numeri-
the system, in the expressions farWe have also studied by cally whether this behavior represents a true finite-time sin-
simulation an atomistic versiofb] of the LD equation in  gularity or not(i.e., whether the height of the pillar would
which the height variablegh;} are integers and “time” is eventually decrease after reaching a very large but finite
measured by the number of layers deposited. This model alsmlug. As described below, this issue is not crucial to our
involves only one dimensionless parameterWe call this  main results because these results are derived from models in
model the Kim—Das Sarm@&D) model below. which the growth of the height is cut off at a finite value.
The possibility of multiexponent scaling was investigated We obtained very similar results for the 1D KD model. A
in our simulations by monitoring different moments of the little algebra shows that in this model, an attempt to deposit
nearest-neighbor height difference and the height differenca “particle” at the site of a pillar of initial height, or at
correlation function. Following Ref6], we define one of its nearest-neighbor sites leads to an increase in the
B N height of the pillar ifhy>12/\. Our simulationgwhich are
oo(N=([si(NINHY,  si(n)=[hi;1()—hi(71)] ()  exact because all the variables in this model are discrete
show that the height of a pillar continues to grow linearly in
time if its initial value is somewhat larger than 12/
_ _ 1 The instability described above appears todemericto
Gl 1) =([hi (1) = hi()[) ™. @ i discretized growth equations containing nonlinear terms.
Multiexponent scaling, as observed in RdB,7], is charac- In particu_lar, we have found very simila_r results for the_2D
terized by aq dependence of the exponerfgenoted by ITD equation and for.the 1I_3. KPz equation. All the qualita-
aqlz in Ref. [6], wherez is the dynamical exponenthat tive features (r)]f the mstablkl:ty f(;und |rf1 th(ra]se two systems
describe the power-law growth of the quantities,(7)} in appear to be the same ast_ ose found for the 1D LD eq'uatlon
time before saturation is reached, i.e., foeL? wherel is [13]. However, the behavior of these two systems differs

the lateral size of the system. The height difference correlaggg tgitrig;t?r?e 15/(;3@2“;“3}1igyg?:mvirrgr:]mg?lg?n;.?;'
tion functionsG, are expected to behave as ' . . . it
a P state, the average nearest-neighbor height difference satu-

Gq(|,1.)~|||£q7 1<| < 712, (5)  rates quickly after an initial increase in both the 2D LD equa-
tion and the 1D KPZ equation. These systems, therefore, are
Again, multiexponent scaling is characterized by a depenexpected to spontaneously exhibit the instability discussed
dence of the exponentg, on g. above only if the value at which the maximum nearest-
Results of integrating the 1D LD equation for small val- neighbor height difference,,,, saturates is higher thdor at
ues of\ (A=2.0) show good agreement with the predictions least close tpthe critical valueh; defined above. Sinck,
of dynamical renormalization-group calculatiof® and no  decreases while the saturation value spf,, generally in-
evidence of multiscaling. For higher values)afthe system creases withy, we can define a nonzero critical valngof A
exhibits conventional scaling behavior at short times. How-at which these two quantities become equal. According to
ever, an instability, indicated by a rapid growth and apparenthe discussion above, systems with values slubstantially
divergence of the height variable, is found at longer times. Asmaller than\ . are not expected to show the instability dur-
similar instability is found in simulations of the 1D KD ing their time evolution from a flat initial state. However, as
model, where it shows up as a rapid increase of the rmgoted before, the value &f cannot be made arbitrarily small
interface width, manifested as a changeover from a powerand the instability cannot be avoided if the “bare” param-
law growth with an exponent close to 1/3 to a linear growtheters are such that,;,>\.. In contrast, nearest-neighbor
in time. This instability was reported by Tu0] for the LD  height differences in the 1D LD equation, which is believed
equation and by Kim and Das Sarif& for the KD model.  to exhibit anomalous dynamic scalifii4], are expected to
Our results are concerned with the origin of this instability continue growing in time. This system, therefore, should al-
and its relation to multiscaling behavior. ways show the instability at sufficiently long times, implying
Our study shows that this instability is caused by the\. to be zero for this system. Results of our simulations with
growth of isolated pillars or grooves. Either pillars or flat initial conditions are fully consistent with this picture.
grooves are unstable in a particular system; which one is The instability described above would, in general, lead to
unstable is determined by the signxfWe find that pillars  deviations from single-exponent scaling for the quantities
(represented by the initial configuratidmn=h,>0 at the {og}. When the instability sets in, the value of the nearest-
central siteh;=0 at all other sitesgrow in time in the LD  neighbor height difference at the point of instability be-
equation with positive: if hg is sufficiently large. It is easy comes large and it grows rapidly in time. Since higher mo-
to show analytically that in the absence of noige=0), iso-  ments ofs (i.e, o for large q) are more sensitive to such
lated pillars of heighty initially grow in time if hy>10/\. large values o8, the growth ofa in time would be faster
Our numerical studies of the equation with noise show thafor larger values ofj. The instability would also produce a
for values ofh, slightly higher than 10/, the height of the long tail extending to large values in the distribution $f
pillar eventually decreases after an initial increase. The apleading to departures from single-exponent scaling for the
parent divergence mentioned above is encounterdy i5  correlation functiondG}. In fact, we do find approximate

and
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multiscaling in our simulations near the time of onset of the 10
instability. The time interval over which such behavior is
observed in the systems considered so far is, however, very
short. This is due to the following reason. In the continuum
equations, the time evolution of the system cannot be fol-

lowed numerically beyond the instability time because the
height variables become too large. In the atomistic KD o
model, the height variables increase so fast after the onset of

the instability that global quantities such as the width of the -
interface begin to show deviations from scaling. In order to ;
explain the numerical results obtained in Rd#8,7], it is
necessary to have a situation in which global quantities scale

in a normal way, whereas the quantitfes,} and{G} show
anomalous multiexponent scaling. The discussion above sug-
gests that such a situation may be realized if the instability is
“controlled” in some way. We have considered several dif-

ferent ways of controlling the instability. We describe here

the results obtained from simulations of two 1D models in

which the instability is controlled by replacing tH&h;|?

term appearing in the discretized LD equation and inthe KD £,5 1. ims interface widthV and the moments,,, q=1-4, of
model by f(|Vhi[?), wheref(x)=(1-e"“)/c, c being an e nearest-neighbor height differen@ee the textas functions of
adjustable parameter. Note that this replacement correspongiie 7 for the 1D KD model with controlled instability =2,

to the introduction of an infinite number of higher-order non-¢=¢.02. Inset: ratiosoo(7)/o4(7), 9=2, 3, and 4, as functions of
linear terms of the forniVh;|2" with specific coefficients that  time .

depend on the value af Since the functiori(x) approaches

a constant valuel/c in the limit x>1/c, it is easy to ShoW \ye find in the simulations. In Figs. 1 and 2, we show a
analytically that the growth instability of isolated pillars in representative set of simulation results obtained Eor
both these models is completely suppressed if the value 0L1000,A=2.0, andc=0.02, averaged over 2000 runs. For

¢ is higher than a critical value that depends on the value of,qqe parameter valuds,,~5.0 andh,.~34.0. As shown

\. For values ot smaller than this critical value, the insta- j, Fig "1, the rms interface widtV shows excellent scaling

bility occurs for an isolated pillar if its height lies within a | it 3n éxponent close to 1/3. The quantitfes;}, however

rangehpin(X,€) <ho<hma(X,C). _ show clear evidence of multiscaling during the time interval
We have studied numerically the behavior of both thes§)onveenr~5 and ~1000. Power-law fits to the data over

models for different values of andc. We describe below s time interval yield the following values for the effective
results obtained for the atomistic KD model because simula-

tions of this model are easier, so that better statistics can be

obtained. Very similar results, but with poorer statistics, -
were obtained for the modified version of the discretized LD o gl ///
equation. o0 b o g2 -

For values ofc that are so large that the instability is o =3 I gy
completely absent, we find conventional scaling with expo- o g=4 Baggggf@;ﬂg:
nents close to the expected values. For very small values of 10 - P P
¢, we find deviations from scaling for global quantities such /E/{o MRS 1=
as the interface width. More interesting behavior is found in = S j//“/{
simulations with intermediate values offor which the in- o X// ®
stability occurs for a limited range of values laf. For such O s _ask o2
values ofc, the instability is expected to be operative over a o 1 gv o
limited time interval. At very early times, the values of the e
nearest-neighbor height differenseare small and no insta- 5 s —
bility occurs. As time progresses, the instability sets in when 1 P —
the value ofs,, crossedy,,. The value ofs at the point of s 70 00
instability then grows rapidly until the growth is cut off at 1
hmax- AS time progresses, the instability occurs at more and . .
more points in the system. The number of points at which a 2 10 20 100
fresh instability can occur decreases in this process. Also, 1
effects of this instability become less pronounced as the typi-
cal value ofs, which grows in time, approachésg,,,. So the FIG. 2. Height-difference correlation functiot,(l), q=1-4,

|nstab|l|ty is eXpeCted to become ineffective at |0ng times. Ifas functions of the separatidnfor the 1D KD model with con-
multiscaling arises due to the instability, then one expects t@olled instability (. =2, c=0.02, 7=1000. The solid lines are
see multiscaling only during the finite time interval over power-law fits to the data ford10. Inset: ratioss4(1)/Gq(1), q=2,
which the instability is active. This is precisely the behavior3, and 4 as functions df
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exponents:a,/z=0.14x0.02, a,/z=0.17=0.02, a3/z
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tion. These exponent values satisfy the expected rel@fibn

=0.22+0.02, and a,/z=0.26=0.03. These exponent {,+a,=a within error bars, although there appear to be

values are similar to those found in RE6] for the 1D DT

systematic deviations from this relation for large Very

model[4]. As shown in the inset of Fig. 1, where we have similar results were obtained in Reff6] for the 1D DT

plotted the time dependence of the rating o, for =2, 3,

model.

and 4, the multiscaling is not present at very early times and These results clearly show that multiscaling very similar
also at times longer than about 1000. By monitoring the timgg that observed in Ref§6,7] can be generated by a con-

development of the distribution ¢§;}, we find thatr~1000

trolled instability. It should, however, be noted that the mul-

is precisely the time at which the instability begins to Ieveltiscaling we find is approximate in the sense that it occurs

off.
In Fig. 2, we have plotted the correlation functicfG}
for the same system at time=1000. Multiscaling is clearly

seen, with the following exponent values calculated from

power-law fits to the data for1<10: {;,=0.74*+0.03,
{,=0.66x0.03, {3=0.58+0.03, and{,=0.50+0.03.
The multiscaling behavior for< 20 is also seen clearly in
the inset, where we have plotted the rat®g(1)/G4(l) for
g=2, 3, and 4 as functions df From the calculated value
(=0.35 of the exponenp (defined byW~ r# before satura-
tion), we estimate the value at= 1/(1—2) to be about 3.4.
Also, the value of the exponet (defined byW~L¢ after

saturation is found to be about 1.25 from calculations of the

only over a limited range of time. A careful look at the data
of Refs.[6,7] indicates that the same is true for the atomistic
models studied in these papers. The multiscaling we find is
nonuniversal in the sense that the effective exponepand

{q depend on the way in which the instability is controlled.
Similar nonuniversality was also found in the models of
Refs.[6,7]. To establish further the validity of the proposed
mechanism of multiscaling, we have studied the evolution of
isolated pillars and grooves in the 1D DT model and found
the probability of growth of isolated grooves in this model to
be very similar to that of pillars in some of the controlled
instability models described above.
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