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We show that discretized versions of commonly studied nonlinear growth equations have a generic insta-
bility in which isolated pillars~or grooves! on an otherwise flat interface grow in time when their height~or
depth! exceeds a critical value. Controlling this instability by the introduction of higher-order nonlinear terms
leads to intermittent behavior characterized by multiexponent scaling of height fluctuations, similar to the
‘‘turbulent’’ behavior found in recent simulations of one-dimensional atomistic models of epitaxial growth.
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PACS number~s!: 81.10.Aj, 81.15.Hi

In recent years, much attention has been focused on the
nonequilibrium dynamics of growing interfaces. A number
of simple models of epitaxial growth have been proposed
and studied@1–7# analytically and numerically, revealing a
rich variety of interesting phenomena. One such phenom-
enon for which no explanation is available at present is the
multiexponent scaling@6# of height fluctuations found in re-
cent simulations@6,7# of a class of one-dimensional~1D!
limited-mobility models of epitaxial growth. This phenom-
enon is particularly interesting because it exhibits a striking
similarity @6# to the intermittent multiscaling of velocity fluc-
tuations in fully developed fluid turbulence@8#. In this paper,
we propose an explanation of this phenomenon. We first
show that discretized versions of simple nonlinear growth
equations, such as the Kardar-Parisi-Zhang~KPZ! equation
@1# and the Lai–Das Sarma~LD! equation@2,3#, exhibit an
instability in which isolated pillars or grooves on an other-
wise flat interface tend to grow in time. Instabilities in direct
numerical integration of discretized KPZ and LD equations
have been noted earlier@9,10#: our results show that these
instabilities aregenericto discretized nonlinear growth equa-
tions if the bare coupling constant~determined by the details
of the model! exceeds a critical value~which may equal
zero!. In contrast to previous studies@9# that attributed the
instability in the discretized KPZ equation to ‘‘numerical
artifacts,’’ our work shows that this instability is anintrinsic
property of the discretized equation with or without noise.
Since the 1D continuum KPZ equation without noisedoes
not have any instability, our results lead to the important
conclusion that the behavior of discretized nonlinear growth
equations may be very different from that of their truly con-
tinuum versions. Our second important finding is that the
recently discovered multiexponent scaling phenomena@6#
are closely connected to this nonlinear growth instability.
Models in which this instability is controlled by introducing
higher-order nonlinear terms exhibit deviations from simple
scaling over the time interval during which the instability is
operative. The behavior in this regime is found to be very

similar to the multiexponent scaling observed in simulations
@6,7# of atomistic growth models if the coefficients of the
higher-order nonlinear terms are chosen appropriately. In
particular, our results indicate that the multiscaling behavior
observed@6# in the 1D Das Sarma–Tamborenea~DT! model
@4# is described by the discretized LD equation or an atom-
istic version of it, supplemented by a set of higher-order
nonlinear terms with appropriate coefficients. Our explana-
tion of multiexponent scaling in growth models is conceptu-
ally similar to a recent proposal@11# that suggests that the
multiscaling of structure functions in turbulence may be
caused by singularities occurring on a dense set of space-
time points.

Our conclusions are based on detailed studies of dis-
cretized versions of the LD and KPZ equations using direct
numerical integration. The LD equation has the form

]h8~r ,t !/]t52n¹4h81l1¹
2u¹h8u21h~r ,t !, ~1!

whereh8(r ,t) represents the ‘‘height’’ variable at the point
r at time t andh is a Gaussian random noise with correla-
tions

^h~r ,t !h~r 8,t8!&52Dd~r2r 8!d~ t2t8!. ~2!

This equation is numerically integrated using a simple Euler
scheme@10,12#. To this end, we first define dimensionless
variablesx, t, andh by choosing appropriate units of length,
time, and height, respectively, and then discretize in space
and time by defining the dimensionless discretization scale
Dx and the integration time stepDt. This leads to a set of
‘‘update equations’’@10# for the variables$hi(t)% represent-
ing the dimensionless height variables at the computational
mesh points at dimensionless timet. We use the standard
three-point definition of the lattice derivatives in most of our
calculations, but have explicitly verified that a more refined
five-point definition does not change our results. The behav-
ior of the discretized equation is governed by a single dimen-
sionless parameterl5A2l1

2D/n3a0
(42d)/2 (d is the substrate

dimension anda0 is the spacing between adjacent mesh
points!, which appears@10# as the coefficient of the nonlinear
term. The KPZ equation can also be cast in a similar form
with l5A2l1

2D/n3a0
(22d)/2 , where n and l1 are, respec-

tively, the coefficients of the linear and quadratic terms in the

*Present and permanent address: Department of Physics, Indian
Institute of Science, Bangalore 560 012, India.
†Present and permanent address: Department of Physics, Halym

University, Chunchon, 200-702, Korea.

PHYSICAL REVIEW E NOVEMBER 1996VOLUME 54, NUMBER 5

541063-651X/96/54~5!/4552~4!/$10.00 R4552 © 1996 The American Physical Society



original continuum equation@1#. Note that in both LD and
KPZ equations in one dimension, the value ofl can be made
small by choosing a small value fora0. However, the small-
est value (lmin) that l can have for a physical system is
obtained by replacinga0 by amin , the short-distance cutoff of
the system, in the expressions forl. We have also studied by
simulation an atomistic version@5# of the LD equation in
which the height variables$hi% are integers and ‘‘time’’ is
measured by the number of layers deposited. This model also
involves only one dimensionless parameterl. We call this
model the Kim–Das Sarma~KD! model below.

The possibility of multiexponent scaling was investigated
in our simulations by monitoring different moments of the
nearest-neighbor height difference and the height difference
correlation function. Following Ref.@6#, we define

sq~t![^@si~t!#q&1/q, si~t!5uhi11~t!2hi~t!u ~3!

and

Gq~ l ,t![^uhi1 l~t!2hi~t!uq&1/q. ~4!

Multiexponent scaling, as observed in Refs.@6,7#, is charac-
terized by aq dependence of the exponents~denoted by
aq /z in Ref. @6#, wherez is the dynamical exponent! that
describe the power-law growth of the quantities$sq(t)% in
time before saturation is reached, i.e., fort!Lz whereL is
the lateral size of the system. The height difference correla-
tion functionsGq are expected to behave as

Gq~ l ,t!'u l uzq, 1! l!t1/z. ~5!

Again, multiexponent scaling is characterized by a depen-
dence of the exponentszq on q.

Results of integrating the 1D LD equation for small val-
ues ofl ~l<2.0! show good agreement with the predictions
of dynamical renormalization-group calculations@2# and no
evidence of multiscaling. For higher values ofl, the system
exhibits conventional scaling behavior at short times. How-
ever, an instability, indicated by a rapid growth and apparent
divergence of the height variable, is found at longer times. A
similar instability is found in simulations of the 1D KD
model, where it shows up as a rapid increase of the rms
interface width, manifested as a changeover from a power-
law growth with an exponent close to 1/3 to a linear growth
in time. This instability was reported by Tu@10# for the LD
equation and by Kim and Das Sarma@5# for the KD model.
Our results are concerned with the origin of this instability
and its relation to multiscaling behavior.

Our study shows that this instability is caused by the
growth of isolated pillars or grooves. Either pillars or
grooves are unstable in a particular system; which one is
unstable is determined by the sign ofl. We find that pillars
~represented by the initial configurationhi5h0.0 at the
central site,hi50 at all other sites! grow in time in the LD
equation with positivel if h0 is sufficiently large. It is easy
to show analytically that in the absence of noise~h50!, iso-
lated pillars of heighth0 initially grow in time if h0.10/l.
Our numerical studies of the equation with noise show that
for values ofh0 slightly higher than 10/l, the height of the
pillar eventually decreases after an initial increase. The ap-
parent divergence mentioned above is encountered ifh0 is

greater than a ‘‘critical’’ valuehc.20/l. We find that the
values ofhc obtained forDt50.01, 0.001, and 0.0001 are
very close to one another, indicating that this instability is
not a numerical artifact of not using a sufficiently small
value ofDt. It is virtually impossible to determine numeri-
cally whether this behavior represents a true finite-time sin-
gularity or not ~i.e., whether the height of the pillar would
eventually decrease after reaching a very large but finite
value!. As described below, this issue is not crucial to our
main results because these results are derived from models in
which the growth of the height is cut off at a finite value.

We obtained very similar results for the 1D KD model. A
little algebra shows that in this model, an attempt to deposit
a ‘‘particle’’ at the site of a pillar of initial heighth0 or at
one of its nearest-neighbor sites leads to an increase in the
height of the pillar ifh0.12/l. Our simulations~which are
exact because all the variables in this model are discrete!
show that the height of a pillar continues to grow linearly in
time if its initial value is somewhat larger than 12/l.

The instability described above appears to begeneric to
all discretized growth equations containing nonlinear terms.
In particular, we have found very similar results for the 2D
LD equation and for the 1D KPZ equation. All the qualita-
tive features of the instability found in these two systems
appear to be the same as those found for the 1D LD equation
@13#. However, the behavior of these two systems differs
from that of the 1D LD equation in one very important as-
pect. During the evolution of the system from a flat initial
state, the average nearest-neighbor height difference satu-
rates quickly after an initial increase in both the 2D LD equa-
tion and the 1D KPZ equation. These systems, therefore, are
expected to spontaneously exhibit the instability discussed
above only if the value at which the maximum nearest-
neighbor height differencesmax saturates is higher than~or at
least close to! the critical valuehc defined above. Sincehc
decreases while the saturation value ofsmax generally in-
creases withl, we can define a nonzero critical valuelc of l
at which these two quantities become equal. According to
the discussion above, systems with values ofl substantially
smaller thanlc are not expected to show the instability dur-
ing their time evolution from a flat initial state. However, as
noted before, the value ofl cannot be made arbitrarily small
and the instability cannot be avoided if the ‘‘bare’’ param-
eters are such thatlmin.lc . In contrast, nearest-neighbor
height differences in the 1D LD equation, which is believed
to exhibit anomalous dynamic scaling@14#, are expected to
continue growing in time. This system, therefore, should al-
ways show the instability at sufficiently long times, implying
lc to be zero for this system. Results of our simulations with
flat initial conditions are fully consistent with this picture.

The instability described above would, in general, lead to
deviations from single-exponent scaling for the quantities
$sq%. When the instability sets in, the value of the nearest-
neighbor height differences at the point of instability be-
comes large and it grows rapidly in time. Since higher mo-
ments ofs ~i.e, sq for large q) are more sensitive to such
large values ofs, the growth ofsq in time would be faster
for larger values ofq. The instability would also produce a
long tail extending to large values in the distribution ofs,
leading to departures from single-exponent scaling for the
correlation functions$Gq%. In fact, we do find approximate
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multiscaling in our simulations near the time of onset of the
instability. The time interval over which such behavior is
observed in the systems considered so far is, however, very
short. This is due to the following reason. In the continuum
equations, the time evolution of the system cannot be fol-
lowed numerically beyond the instability time because the
height variables become too large. In the atomistic KD
model, the height variables increase so fast after the onset of
the instability that global quantities such as the width of the
interface begin to show deviations from scaling. In order to
explain the numerical results obtained in Refs.@6,7#, it is
necessary to have a situation in which global quantities scale
in a normal way, whereas the quantities$sq% and$Gq% show
anomalous multiexponent scaling. The discussion above sug-
gests that such a situation may be realized if the instability is
‘‘controlled’’ in some way. We have considered several dif-
ferent ways of controlling the instability. We describe here
the results obtained from simulations of two 1D models in
which the instability is controlled by replacing theu¹hi u2
term appearing in the discretized LD equation and in the KD
model by f (u¹hi u2), where f (x)[(12e2cx)/c, c being an
adjustable parameter. Note that this replacement corresponds
to the introduction of an infinite number of higher-order non-
linear terms of the formu¹hi u2n with specific coefficients that
depend on the value ofc. Since the functionf (x) approaches
a constant value1/c in the limit x@1/c, it is easy to show
analytically that the growth instability of isolated pillars in
both these models is completely suppressed if the value of
c is higher than a critical value that depends on the value of
l. For values ofc smaller than this critical value, the insta-
bility occurs for an isolated pillar if its height lies within a
rangehmin(l,c),h0,hmax(l,c).

We have studied numerically the behavior of both these
models for different values ofl andc. We describe below
results obtained for the atomistic KD model because simula-
tions of this model are easier, so that better statistics can be
obtained. Very similar results, but with poorer statistics,
were obtained for the modified version of the discretized LD
equation.

For values ofc that are so large that the instability is
completely absent, we find conventional scaling with expo-
nents close to the expected values. For very small values of
c, we find deviations from scaling for global quantities such
as the interface width. More interesting behavior is found in
simulations with intermediate values ofc for which the in-
stability occurs for a limited range of values ofh0. For such
values ofc, the instability is expected to be operative over a
limited time interval. At very early times, the values of the
nearest-neighbor height differences are small and no insta-
bility occurs. As time progresses, the instability sets in when
the value ofsmax crosseshmin . The value ofs at the point of
instability then grows rapidly until the growth is cut off at
hmax. As time progresses, the instability occurs at more and
more points in the system. The number of points at which a
fresh instability can occur decreases in this process. Also,
effects of this instability become less pronounced as the typi-
cal value ofs, which grows in time, approacheshmax. So the
instability is expected to become ineffective at long times. If
multiscaling arises due to the instability, then one expects to
see multiscaling only during the finite time interval over
which the instability is active. This is precisely the behavior

we find in the simulations. In Figs. 1 and 2, we show a
representative set of simulation results obtained forL
51000,l52.0, andc50.02,averaged over 2000 runs. For
these parameter values,hmin.5.0 andhmax.34.0. As shown
in Fig. 1, the rms interface widthW shows excellent scaling
with an exponent close to 1/3. The quantities$sq%, however,
show clear evidence of multiscaling during the time interval
betweent'5 andt'1000. Power-law fits to the data over
this time interval yield the following values for the effective

FIG. 1. rms interface widthW and the momentssq , q51–4, of
the nearest-neighbor height difference~see the text! as functions of
time t for the 1D KD model with controlled instability (l52,
c50.02!. Inset: ratiossq(t)/s1(t), q52, 3, and 4, as functions of
time t.

FIG. 2. Height-difference correlation functionsGq( l ), q51–4,
as functions of the separationl for the 1D KD model with con-
trolled instability (l52, c50.02, t51000!. The solid lines are
power-law fits to the data for l<10. Inset: ratiosGq( l )/G1( l ), q52,
3, and 4 as functions ofl .
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exponents:a1 /z50.1460.02, a2 /z50.1760.02, a3 /z
50.2260.02, and a4 /z50.2660.03. These exponent
values are similar to those found in Ref.@6# for the 1D DT
model @4#. As shown in the inset of Fig. 1, where we have
plotted the time dependence of the ratiossq /s1 for q52, 3,
and 4, the multiscaling is not present at very early times and
also at times longer than about 1000. By monitoring the time
development of the distribution of$si%, we find thatt'1000
is precisely the time at which the instability begins to level
off.

In Fig. 2, we have plotted the correlation functions$Gq%
for the same system at timet51000. Multiscaling is clearly
seen, with the following exponent values calculated from
power-law fits to the data for 2< l<10: z1150.7460.03,
z250.6660.03, z350.5860.03, andz450.5060.03.
The multiscaling behavior forl< 20 is also seen clearly in
the inset, where we have plotted the ratiosGq( l )/G1( l ) for
q52, 3, and 4 as functions ofl . From the calculated value
~.0.35! of the exponentb ~defined byW;tb before satura-
tion!, we estimate the value ofz51/(122b) to be about 3.4.
Also, the value of the exponenta ~defined byW;La after
saturation! is found to be about 1.25 from calculations of the
sample-size dependence of the interface width after satura-

tion. These exponent values satisfy the expected relation@6#
zq1aq5a within error bars, although there appear to be
systematic deviations from this relation for largeq. Very
similar results were obtained in Ref.@6# for the 1D DT
model.

These results clearly show that multiscaling very similar
to that observed in Refs.@6,7# can be generated by a con-
trolled instability. It should, however, be noted that the mul-
tiscaling we find is approximate in the sense that it occurs
only over a limited range of time. A careful look at the data
of Refs.@6,7# indicates that the same is true for the atomistic
models studied in these papers. The multiscaling we find is
nonuniversal in the sense that the effective exponentsaq and
zq depend on the way in which the instability is controlled.
Similar nonuniversality was also found in the models of
Refs.@6,7#. To establish further the validity of the proposed
mechanism of multiscaling, we have studied the evolution of
isolated pillars and grooves in the 1D DT model and found
the probability of growth of isolated grooves in this model to
be very similar to that of pillars in some of the controlled
instability models described above.
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